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Murray Hill, NJ 07974, U. C. PAEK, Western Electric Company, Engineering
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SYNOPSIS

"A freely oscillating torsion pendulum has been used to characterize the
dynamic mechanical behavior of single polymer-coated optical fibers. The
dynamical mechanical spectra of the polymer coatings exhibit a glass transition
temperature (Tg), a cryogenic glassy-state relaxation (Tsec)’ and another
cryogenic relaxation that is attributed to water present in the coating (Tuzo)‘
The-shear modulus (G') of the coating was computed from the shear moduli of the
composite specimens and the core, assuming that the coating and core deform

through the same angle of oscillation., The glassy-state modulus was the same

for both thin and thick coatings, although the intensity of the damping peaks,

as measured by the logarithmic decrement, increased with coating thickness.

Comparison of the dynamic mechanical behavior of a coated optical fiber and

of a free film cast from the same reactive components shows that the polymer .
itself can absorb water at ambient conditions and display a mechanical relaxa-

tion at cryogenic temperatures. The Tnzo and Tsec relaxations are coupled

with respect to their intensities. Latent chemical reactivity was found in

one coating above its maximum temperature of cure. In this, the temperature

of cure determines the glass transition temperature.
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INTRODUCTION

Polymeric coatings on optical telecommunication fibers provide long-
term protection from abrasion and environment which preserves the pristine
strength of the fibers.1 Mechanical properties of the coating are also
important because they influence optical attenuation through microbending
loss.2 To protect the fiber from immediate environmental damage and to pre-
vent beading of the fluid resin, the coating is fcrmed immediately after the
silica has been drawn from a preform rod. The coating is applied by pulling
the fiber through a reservoir of reactive prepolymer fitted with a flexible
rubber die.3 Hydrodynamic forces at the tip of the die center the fiber.

The formulations used to produce the coatings studied in this report are UV-
curable epoxy diacrylates.

Single optical fibers were employed as the specimens in conventional
torsion pendulum experiments in which freely decaying waves were inter-
mittently initated. The sensitivity of a freely decaying torsion pendulum
equipped with a nondrag optical transducer permits examination of the dynamic
mechanical properties of coated and bare single filaments. The simple con-
centric geometry of the fiber and coating in a commerical opticla fiber allows
calculation of the actual in-phase shear modulus of the polymer coating from
the composite properties, assuming that the coating is well bonded to the
core and that the angular deformation of fiber and coating are the same.‘"5
In situ characterization of optical fiber coatings is attractive because it is
difficult to reproduce the exact radiation doses, curing conditions, and pro-
perties when preparing unsupported film specimens.

This report concerns the dynamic mechanical behavior of optical fiber

coatings and the evaluation of the effects of elevated temperature and water




vapor on them using a torsion pendulum. A preliminary report has been pub-

R
lished.”

EXPERIMENTAL

Specimens (5-6 cm) of coated fiber were cut from continuous lengths.
They were examined closely to ensure that fiber and coating were concentric.
Coatings were removed from some segments by soaking in tetrahydrofuran at
room temperature for 12 h, and these were then used to obtain the shear
modulus of the bare fiber. The diameters of the coated and bare fibers were
measured to within $0.0001 cm with an optical microscope.

Dynamic mechanical spectra (ca. 1 Hz) were obtained using an auto-
mated torsion pendulum,6 a schematic diagram of which is shown in Figure 1.
The specimen is mounted in clamps between the supporting and lower extender
rods and lowered into the temperature-controlled chamber. The assembly is
then coupled magnetically to the inertial disk; the latter remains permanently
in the lower section of the instrument (see Fig. 2). The weight supported by
the specimen is about 15 g. The polaroid disk serves as one part of the
optical transducer. A beam of light passes through the oscillating disk and
then through a second stationary polaroid sheet. The attenuated light is con-
verted to an electrical analog signal by a linearly responding photodetector.
The singal is monitored by an anolog computer6 which computes the period of
the oscillation and the damping coefficient for each wave. Recent publica-

7,8 report the use of digital computers for control and data processing

tions
of freely decaying torsion pendulum experiments.
The specimen is enclosed in a temperature- and humidity-controlled-and-

measured environment of helium. Spectra were obtained between -190 and 115°C.




THEORY

i The shear modulus of a rcd of material can be defined as:

G’-lu g

y r(dé/dl)

(1)

For a long cylindrical shaft where d6/d1 1is small and constant along the

shaft, the shear stress is

dé G'rb
syl ol 2)
o Gl’dl- 1

The torque per unit length is the summation of the moments of the shear

forces:

g R G'0xR*
T-fﬂcrr(21rrdr)-gl‘—‘£ 2eridr = =7 @
(1]

For a composite shaft with no slip at the interface, the torque can be
expressedg as (see Fig. 3)

TeT\+T, (fiber = 1, coating = 2)

Gi6, rh Gh:

== 3 ’ sd “)
- L J; 2xridr 4+ L - 2xrSadr

Assuming equiangular displacement in fiber and coating (8; = 6, = 8),
T-:—: [GiR! + Gy(RY ~ R)) ®

This overall torque is related to an overall modulus of the composite (G')

through eq. (3):

Tu "'::R bx iRt + GyRi - R ®

Tal

where G' of the composite is related to the period (P) of oscillation of the

composite through 10
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The modulus of the coating can be determined from the period of oscillation of

the composite and the shear modulus of the fiber through eqs. (6) and (7):

. _G'R{~G\R! (8xLI/P?) - G,R!
G2 = Ri—R{J. Ri-R? = ®

The loss modulus (G'") of a specimen is related to the logarithmic decrement

(A) and the shear modulus (G') of the specimen by

cr =2 | ®)

where
oo tuf)
n i+n

in which n is the number of oscillations between the ith and (i + n)th peaks
of a decaying wave, and Ai and Ai+n are the peak amplitudes of the ith and

(i + n)th oscillations, respectively.

CALIBRATION

Calibration required the determination of the moment of inertia of
the inertial mass of the torsion pendulum using a calibrated wire. An alumi-
num rod of measured geometry and mass was used as the inertial mass for cali-
brating a chromium-nickel alloy wire. The period of the oscillation was
obtained by averaging over a number of oscillations using a stop watch; the

procedure was repeated many times to decrease the statistical uncertainty.




The shear modulus of the calibration wire was determined to be 8.612 x 10%!
dyn/cm? using eq. (7) and the geometry and mass of the rod and the period of
oscillation. The calibrated wire was then used as the specimen in the torsion
pendulum, and the moment of inertia of the system was determined to be

31.56 g-cm’. The bare fiber was then used as the specimen, and its shear
modulus (Gi) was determined: Gi = 1.936 x 10%? dyn/cmz. Gi was taken to be
independent of temperature over the temperature range in question (-~190 to

115°C).
RESULTS AND DISCUSSION

Results were obtained for two specimens having coatings prepared in the
same manner but having different thicknesses. The coating thickness (R2 - Rl)
was 0.0050 cm for the thin coating and 0.0115 cm for the thick coating. The
specimens were conditioned in the apparatus in dry helium at 22°C for 16 h
prior to obtaining thermomechanical data. Plots of the shear modulus of the
coating (Gé) calculated from eq. (8) versus temperature for the thin and thick
coatings are presented in Figure 4. Shear modulus data for the two specimens
appear to be similar and within experimental error. Small differences are
caused by the experimental error in measuring the radii due to the fourth-order
dependence of G! on the radius.

2
The values for Gé appear to be valid in the glassy resion of the spectrum
when the contribution of the polymer coating to overall specimen rigidity is
equivalent to that of the hard core. The modulus of the silica fiber is almost
an order of magnitude higher than that of the glassy coating, but the fourth-

power dependence of the modulus on the radius [see eq. (7)] enhances the con-

tribution of the coating to the overall rigidity.




The coating becomes rubbery above its glass transition temperature (Tg)
where its real modulus is expected to drop by at least an order of magnitude.
The contribution of the coating to the composite rigidity above Tg is there-
fore greatly reduced in comparison with the contribution of the core fiber.

The sensitivity of the technique is therefore poor above the Tg of the coating.
In principle, the problem can be avoided by forming the polymer on a core
support of low modulus. The values of the glassy shear modulus shown in

Figure 4 appear to be in good agreement with an earlier report of mechanical
properties of a free film of UV-cured epoxy acrylate obtained with a mechanical
spectrometer. At -100°C and 1 rad/sec, where G' is relatively independent of
frequency, the report (11) shows G' = 2.55 x 10%? dyne/cw® . This compares
well with the value of 2.45 x 10'° dyn/cm? obtained by averaging the values
obtained herein using the thin (2.60 x 101° dyn/cmz) and thick (2.31 x 10%°
dyn/cm?®) specimens.

Figure 5 is a plot of the logarithmic decrement of the composite for both
the thin and thick coatings. Two thermomechanical transitions were found in
the spectra. A glass transition was found slightly above room temperature in
each: 25°C for the thin coating and 34°C for the thick coating. A secondary
relaxation (Tsec) associated with epoxy acrylate materials was found at -144°C
in both coatings.

The intensity of the damping peaks increases with the amount of coating
in the composite. The intensity of the damping peak at the glass transition
temperature of the coating is plotted against the volume fractionm and also
against the volume of coating in Figure 6. The data plotted versus the volume

of polymer coating provide a straight line that extrapolates to the low damping

value of the glass fiber. It is accepted that the logarithmic decrement is




proportional to the volume fraction of dissipative material,12 provided that
the geometry is unchanged.

A free film of coating material was formed and used as a conventional
torsion pendulum specimen after ASTM D—2236.13 The film was a rectangular
so0lid with dimensions 0.063 cm x 0.254 cm x 5.40 cm. Figure 7 is a plot of
the relative rigidity (1/P2), which is directly proportional to the shear

modulus, and logarithmic decrement versus temperature. The specimen had
been conditioned 1 h in dry helium (ca. 50 parts per million HZO) at 60°C,
and its spectrum displayed a small but distinct damping peak between the more
pronounced secondary (Tsec) and glass transition (Tg) damping peaks. The
specimen was then further conditioned for 10 h at 60°C in dry helium, and the

spectrum was again obtained (Fig. 8). The small damping peak was not present,

indicating that it is associated with small amounts of water present in the polv-

14

H20

was found to be completely reversible and controllable through the humidity

mer that are absorbed at ambient conditions. This relaxation, denoted T

of the conditioning atmosphere. This result on the free film indicates that
water relaxations will generally be present under use conditions of optical
fiber coatings of the epoxy acrylate type when used in the absence of a dry
atmosphere.

A final example consists of the dynamic mechanical analysis of a fiber
coated with a different epoxy acrylate formulation than that discussed earlier.
The initial temperature scan (22 + -190 + 100°C) obtained after conditioning
in dry helium at 22°C for 16 h is presented in Figure 9. The spectrum shows a

secondary relaxation (Tsec), a water relaxation (T, .), and a complex glass

H20

transition region. The subsequent scan from 100°C (100 » -190 » 115 ~» 30°C)

showed no water relaxation, an increased intensity for the secondary relaxa-

tion (it has been reportedla that the Tsec and TH 0 relaxations are coupled),
2




and a slightly elevated and somewhat narrower glass transition. This latter
result indicates that this coating has latent reactivity at temperatures

above its temperature of formation (which was essentially room temperature).

CONCLUSIONS

Dynamic mechanical properties of the polymeric coatings of optical
fibers have been measured in situ using an automated torsion pendulum. The
shear modulus of the coating was calculated from the moduli of the composite
and core. The glassy modulus of one coating at -100°C was 2.45 x 10*° dyn,cm®,
which is in good agreement with reports on unsupported film specimens.

Dynamic mechanical spectra of the coatings and free films were sensitive
to water absorbed in the polymer which could be removed by extended periods
of drying. A low-temperature water relaxation was coupled with a low-temperature
relaxation of the dry polymer.

In one polymeric system, with the curing temperature (“RT) well below the
maximum glass transition temperature, the material was incompletely cured.

Heating above the temperature of formation increased Tg.

Partial support by the Chemistry Branch of the Office of Naval Research

is acknowledged.
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NOTATION

subscripts denoting fiber and coating, respectively

peak angular deforuation corresponding to cycle number i

in-phase shear modulus (dyn/cmz)

out-of-phase shear modulus (dyn/cm2)

Moment of inertia (g-cmz)

specimen length (cm)

spatial variable in axial direction

period (s)

radius (cm)

variable in radical direction

(torque (dyn-cm)

shear strain

logarithmic decrement

shear stress (dyn/cmz)

angular deformation
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FIGURE CAPTIONS
1. Automated torsion pendulum.

2. Mounted specimen assembly ready for lowering into the vertical cavity
of the temperature controlled enclosure.

3. Assumed geometry and deformation in a coated fiber under torsional
loading.

4. Calculated in-phase shear modulus (G') of coating vs. temperature (°C)
for two specimens with different thicknesses of coatings: ( ) thin
coating, R1 = 0.0055 cm, Ry = 0.0105 cm, L = 5.80 cm; (o) thick coatings,
R; = 0.0055 cm, Rp = 0.0170 c¢m, L = 5.70 cm. Conditioning: 22°C/16h/dry
helium. Experiment: 22 + -190 + -100°C. AT/At = 1°C/min. Plot
shown: -190 -+ 100°C.

5. Logarithmic decrement (A) of composite vs. temperature (°C) for two
specimens with different coating thicknesses (same specimens as for
Fig. 4): (@) thin coating, Tg = 25°C (0.27 Hz)., Tge. = -144°C
(0.33 Hz); (o) thick coating Tg = 34°C (0.39 Hz), Tgec = 144°C (0.72 Hz).

6. Logarithmic decrement (A) of composite at Tg of polymer coating vs.
volume fraction (A) and volume (@) of coating in the composite.

Fig. 7. Free film: relative rigidity (1/P2) and logarithmic decrement (&)

vs. T (°C). Conditioning: 60°C/1 h/dry helium. Plot: 60 + -190 -+
60°C; AT/At = 1°C/min. Tg = 40°C (0.52 Hz) (decreasing temperature),
41.5°C (0.43 Hz) (increasing temperature). THZO = ~71°C (2.53 H2),
Tgec = -138°C (2.85 Hz).




Fig. 8.

Fig. 9.

Free film: relative rigidity (1/P2) and logarithmic decrement (1)
vs. T (°C) (same specimen as in Fig. 7). Conditioning: 60°C/11 h/
dry helium (see also Fig. 7). Plot: 60 - -190 + 60°C; 2T/tt = 1°C/
min. Tg = 41°C (0.41 Hz), Tge. - 134°C (2.80 Hz) (decreasing
temperature).

Composite: relative rigidity (l/Pz) and logarithmic decrement (1)
vs. T (°C). conditioning: 22°C/16 h/dry helium. Plot: 22 -+ -190 -
100 + -190 + 115 + 30°C; AT/At = 1°C/min. Ry = 0.0055 cm, R2 =
0.0155 cm, L = 5.95 cm; Tg = 95°C to 103°C, Ty 0 = -67°C (0.052 Hz),
Tgec = -136°C (0.56 Hz) to -130°C (0.55 Hz). 2
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